MATH 181E: Mathematical Statistics - Time Series Discussion 2:

Dehao Dai

Department of Mathematics, UCSD

January 19, 2023

Outline

Review

Exercise Discussion

Outline

Review

Exercise Discussion

Definition

Suppose $\{X_t\}$ is a time series with $E(X_t^2) < \infty$

Mean function is defined as

$$\mu_X(t) = E(X_t)$$

Autocovariance function (ACVF) is defined as

 $\gamma_X(s,t) = \operatorname{Cov}\left(X_s, X_t\right) = \operatorname{E}\left[\left\{X_s - \mu_X(s)\right\}\left\{X_t - \mu_X(t)\right\}\right]$

Autocorrelation function (ACF) is defined as

$$\rho_X(s,t) = \frac{\gamma_X(s,t)}{\sqrt{\gamma_X(s,s)\gamma_X(t,t)}}$$

Definition

In this class, we claim $\{X_t\}$ is stationary which means weakly stationary time series and satisfies

- $\mu_X(t)$ is independent of t
- $\gamma_X(t+h,t)$ is independent of t for each h

And we can simply write $\mu_X = \mu_X(t)$.

• Autocovariance function at lag h is

$$\gamma_X(h) = \gamma_X(h, 0) = \operatorname{Cov}\left(X_{t+h}, X_t\right)$$

Autocorrelation function at lag h is

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = \operatorname{Corr}\left(X_{t+h}, X_t\right)$$

Properties

Properties of $\gamma_X(\cdot)$:

- 1. $\gamma_X(0) \ge 0$
- 2. $|\gamma_X(h)| \leq \gamma(0)$ for all h
- 3. $\gamma_X(h) = \gamma_X(-h)$ for all h
- 4. γ_X is nonnegative definite; i.e., $\sum_{i,j=1}^n a_i \gamma_X (i-j) a_j \ge 0$ for all positive integers n and real vectors $\boldsymbol{a} = (a_1, \ldots, a_n)^{\mathrm{T}} \in \mathbb{R}^n$.
- Properties of $\rho_X(\cdot)$:
 - 1. all properties of $\gamma_X(\cdot)$
 - **2**. $\rho_X(0) = 1$

Outline

Review

Exercise Discussion

Exercise 1

Consider the random walk with drift model

$$x_t = \delta + x_{t-1} + w_t,$$

for t = 1, 2, ..., with $x_0 = 0$, where w_t is white noise with variance σ_w^2 .

- 1. Show that the model can be written as $x_t = \delta t + \sum_{k=1}^t w_k$.
- 2. Find the mean function and the autocovariance function of x_t .
- 3. Argue that x_t is not stationary.
- 4. Discuss $y_t = x_t x_{t-1}$ and check whether the new time series is stationary.

Exercise 2

A time series with a periodic component can be constructed from

 $x_t = U\sin\left(2\pi\omega_0 t\right)$

where U are independent random variables with zero means and $E(U^2) = \sigma^2$. Check whether this series is weakly stationary and calculate the autocovariance function $\gamma(h)$.