MATH 181E: Mathematical Statistics - Time Series Discussion 4:

Dehao Dai

Department of Mathematics, UCSD

February 2, 2023

Outline

Review

Exercise

Review

Determine the p and q in ARMA

 $\mathsf{ARMA}(p,q)$ process $\{X_t\}$ is a stationary process that satisfies

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = W_t + \theta_1 W_{t-1} + \dots + \theta_q W_{t-q}$$

where $\{W_t\} \sim WN(0, \sigma^2)$. It can also be written as

 $\phi(B)X_t = \theta(B)W_t$

where

$$\phi(B) = 1 - \phi_1 B - \dots - \phi_p B^p$$

and

$$\theta(B) = 1 + \theta_1 B + \dots + \theta_q B^q.$$

Causality and Invertibility

Theorem

A unique stationary solution to $\phi(B)X_t = \theta(B)W_t$ exists if and only if the roots of $\phi(z)$ avoid the unit circle:

$$|z| = 1 \Rightarrow \phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0$$

Theorem

An ARMA(p,q) process $\{X_t\}$ is causal if and only if $\phi(z) \neq 0$ for all $|z| \leq 1$.

Theorem

An ARMA(p,q) process $\{X_t\}$ is invertible if and only if $\theta(z) \neq 0$ for all $|z| \leq 1$

Causal function of ARMA(2,1)

We have $\phi(z)$ with roots z_1 and z_2 . If $|z_1|, |z_2| > 1$, then $\{X_t\}$ is causal. To find the causal function, we have

$$\begin{aligned} 1 &= \psi_0, \\ \theta_1 &= \psi_1 - \phi_1 \psi_0 \\ \theta_2 &= \psi_2 - \phi_1 \psi_1 - \phi_2 \psi_0 \end{aligned}$$

We have the solution:

$$\psi_0 = 1, \quad \psi_1 = \theta_1 + \phi_1 \psi_0$$

and

$$\psi_j - \phi_1 \psi_{j-1} - \phi_2 \psi_{j-2} = 0, \quad j \ge 2$$

Causal function of ARMA(2,1)

We have several cases:

- 1. z_1 and z_2 are different real numbers
- 2. z_1 and z_2 are conjugate complex numbers
- 3. z_1 and z_2 are same real numbers

The corresponding general solutions are

1.
$$\psi_n = c_1 z_1^{-n} + c_2 z_2^{-n}$$

2. If $z_1 = |z_1| (\cos \theta + i \sin \theta)$, then

$$\psi_n = c_1 |z_1|^{-n} \cos(n\theta - c_2)$$

3. $\psi_n = (c_1 + c_2 n) z_1^{-n}$ for $n \ge \max(p = 2, q + 1 = 1 + 1) - p = 0$. The constants c_1 and c_2 are found from the boundary conditions $\psi_0 = 1$ and ψ_1 .

Outline

Review

Exercise

Exercise

Exercise 1

Determine which of the following processes are ARMA(p,q) and find the p and q. And determine which of them are causal and/or invertible:

(a)
$$X_t + .2X_{t-1} - .48X_{t-2} = W_t$$
,
(b) $X_t + 1.9X_{t-1} + .88X_{t-2} = W_t + .2W_{t-1} + .7W_{t-2}$,
(c) $X_t + .6X_{t-2} = W_t + 1.2W_{t-1}$,
(d) $X_t + 1.8X_{t-1} + .81X_{t-2} = W_t$,
(e) $X_t + 1.6X_{t-1} = W_t - .4W_{t-1} + .04W_{t-2}$.

Exercise 2

Find the coefficients $\psi_j, j=0,1,2,\ldots$, in the representation

$$X_t = \sum_{j=0}^{\infty} \psi_j W_{t-j}$$

of the ARMA(2,1) process,

 $(1 - .5B + .04B^2) X_t = (1 + .25B)W_t, \quad \{W_t\} \sim WN(0, \sigma^2)$